Python Scripting
Overview
Teaching: 45 min
Exercises: 15 minQuestions
Key question
Objectives
First objective.
First example
This example shows some multiprocessing
import numpy as np
from scipy.optimize import minimize
from multiprocessing import Pool
def rosen_der(x):
xm = x[1:-1]
xm_m1 = x[:-2]
xm_p1 = x[2:]
der = np.zeros_like(x)
der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
der[-1] = 200*(x[-1]-x[-2]**2)
return der
def rosen(x):
"""The Rosenbrock function"""
return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
def func(n):
x0 = np.random.rand(5)
res = minimize(rosen, x0, method='BFGS', jac=rosen_der)
return res.x
if __name__ == '__main__':
p = Pool(16)
ret = p.map(func, list(range(16)))
for i in ret:
print(i)
Key Points
First key point.